Electrical and Computer Systems Engineering Department Integrated Circuit ENCS333

Question 1 (15)

1- Describe PMOS, NMOS Explain how they work? I am not looking for ON/OFF answers. A discussion of the Vgs.Id curve and region of operation should ensue. (5points)

```
If Vds - 0,
    Accumulation Vgs << Vt
    Depletion Vgs ~ Vt
    Inversion vgs > Vt
If Vds >0,
    Unsaturated Vgs - Vt > Vds
    Saturation Vgs - Vt < Vds
    Cutt-off Current flow is essentially zero.
```

2- How do you evaluate performance of a digital circuit, please name at least three? (3 points)
a. Area/Cost
b. Reliability
c. Scalability
d. Speed (delay, operating frequency)
e. Power dissipation
f. Energy to perform a function
2. Yield \& Defects : What is the yield and how do we calculated? (2 points)

$$
Y=\frac{\text { No. of good chips per wafer }}{\text { Total number of chips per wafer }} \times 100 \%
$$

3. What are the three types of power? (5 points)

- $p(t)=v(t) i(t)=V$ supplyi (t)
- Peak power:
- Ppeak = Vsupplyipeak
- Average power:

$$
P_{\text {ave }}=\frac{1}{T} \int_{t}^{t+T} p(t) d t=\frac{V_{\text {supply }}}{T} \int_{t}^{t+T} i_{\text {supply }}(t) d t
$$

Question 2 (25)

1. What type of logic function does these circuit do? (12 points)

AND
 $Y=X$ if A AND B

or

$$
Y=X \text { if } \bar{A} \text { OR } \bar{B}=\overline{A B}
$$

2. Given the truth table below, (8 points)

1- Draw the CMOS circuit in transistor level
2- Draw the layout stick diagram

\mathbf{A}	\mathbf{B}	Out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

3- Given a complex gate as shown below, what the function of the circuit? (5 points)

$F=((A+B) . C\}^{\prime}$

Question 4 (25)

1. Draw the CMOS transistor level for this complex Gate and draw the stick diagram for it $F=E+(A B)+C D(15$ points)

2. Consider the following figure below, what type of logic gate is this? Do you think the designer balance the rise and fall time? (10 points)

NAND2. The pull-up network has two PMOSFETs in parallel and the pulldown network has two NMOSFETs in series. Interestingly, we can see that the designer didn't balance tphl and tplh.

Question 4 (25)

Draw static and dynamic implementation for $\mathrm{F}=(\mathrm{C}+\mathrm{B}) . \mathrm{A}$ (10 points)

4- What is the output voltage of each of these devices: (15 points)

- If $\mathrm{Vgd}<\mathrm{Vt}$, channel pinches off near drain when $\mathrm{Vds}>\mathrm{Vdsat}=\mathrm{Vgs}-\mathrm{Vt}$

$$
I_{d s}=\left\{\begin{array}{clccr}
0 & V_{g s}<c & V_{t} & \text { Cutoff } \\
\beta\left(V_{g s}-V_{t}-V_{d s} / 2\right) V_{d s} & V_{d s}<V_{\text {dsat }} & \text { Linear } \\
\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2} & V_{d s}> & V_{d s a t} & \text { Saturation }
\end{array}\right.
$$

- Example, pass transistor passing VDD Vg = VDD If Vs > VDD - Vt, Vgs < Vt Hence, transistor would turn itself of

What would be the voltages on the different nodes?

Assume: initial voltage of 0.5 V on all the internal nodes

$$
V_{d d}=1.0 \mathrm{~V}, V_{t_{n}}=0.2 \mathrm{~V} \text { and }\left|V_{t_{p}}\right|=0.2 \mathrm{~V}
$$

Electrical and Computer Systems Engineering Department

 Integrated Circuit ENCS333

Question 4 (10)

Consider a three trainsitor circuit as shown in figure below. $\mathrm{Vdd}=2.5 \mathrm{~V}$ and input signal switch between 0 and Vdd with sharp rise and fall times. All transistor are minimum length $\mathrm{l}=0.25 \mathrm{UM}$, trainsestor width $\mathrm{W} 2=2 \mathrm{um}, \mathrm{W} 1=1 \mathrm{um}$. Note: ignore body effect. Find M3 transistor width such that the switching point of the inverter (Vm) is placed in the middle of $V x$ signal swing (10 points)

Electrical and Computer Systems Engineering Department

$$
\begin{aligned}
& V_{\text {IN }}= 2.5 \mathrm{~V} \rightarrow V_{x_{\mathrm{K}}}= \\
& V_{\text {IN }}= 0 \rightarrow V_{x_{l}}=0 \mathrm{~V} \\
& V_{m}=\frac{V_{x_{H}}-V_{x_{L}}}{2}=1.05 \mathrm{~V}
\end{aligned}
$$

At $V_{\text {out }}=V_{m}, V_{D S}=-1.45 \mathrm{~V}$ for PMOS M_{2} and
$V_{D S}=1.05 \mathrm{~V}$ for $\operatorname{NMOS} M_{3}$, which means both MI_{2} and $M 3$ are velocity Saturated ($V_{D S A T P}=-1, V_{\text {DSATn }}=0.6$).
We brow for the inverter $I_{M 2}=I_{M 3}$, so we can solve for the width of M3 using the velocity saturated current equations.

$$
\begin{aligned}
& \frac{I_{D S 3}}{I_{S D 2}}=\frac{W_{n} K_{n}^{\prime} V_{D S A T n}\left(V_{m}-V_{t n}-\frac{V_{D S A T n}}{2}\right)}{W_{P} L_{f}^{\prime} V_{D S A T P}\left(\left(V_{D D}-V_{m}\right)+V_{t p}+\frac{V_{\text {DEATh }}}{2}\right)}=1
\end{aligned}
$$

