

Midterm 19/4/2016

Question 1 (15)

1- Describe PMOS, NMOS Explain how they work? I am not looking for ON/OFF answers. A discussion of the Vgs.Id curve and region of operation should ensue. (5points)

```
If Vds = 0,
  Accumulation Vgs << Vt
  Depletion
                 Vgs ~ Vt
              Vgs > Vt
  Inversion
If Vds >0,
 Unsaturated Vgs - Vt > Vds
 Saturation Vgs - Vt < Vds
Cutt-off Current flow is
                 Current flow is essentially zero.
```

- 2- How do you evaluate performance of a digital circuit, please name at least three? (3 points)
 - a. Area/Cost
 - b. Reliability
 - Scalability
 - d. Speed (delay, operating frequency)
 - e. Power dissipation
 - f. Energy to perform a function
- 2. Yield & Defects: What is the yield and how do we calculated? (2 points)

$$Y = \frac{\text{No. of good chips per wafer}}{\text{Total number of chips per wafer}} \times 100\%$$

- 3. What are the three types of power? (5 points)
 - p(t) = v(t)i(t) = Vsupplyi(t)
 - Peak power:
 - Ppeak = Vsupplyipeak
 - Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t)dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t)dt$$

Midterm 19/4/2016

Question 2 (25)

1. What type of logic function does these circuit do? (12 points)

- 2. Given the truth table below, (8 points)
 - 1- Draw the CMOS circuit in transistor level
 - 2- Draw the layout stick diagram

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

3- Given a complex gate as shown below, what the function of the circuit? (5 points)

F=((A+B).C)

Midterm 19/4/2016

Question 4 (25)

1. Draw the CMOS transistor level for this complex Gate and draw the stick diagram for it F=E+(AB)+CD(15 points)

2. Consider the following figure below, what type of logic gate is this? Do you think the designer balance the rise and fall time? (10 points)

NAND2. The pull-up network has two PMOSFETs in parallel and the pulldown network has two NMOSFETs in series. Interestingly, we can see that the designer didn't balance tphl and tplh.

Midterm 19/4/2016

Question 4 (25)

Draw static and dynamic implementation for F=(C+B).A (10 points)

- 4- What is the output voltage of each of these devices: (15 points)
- If Vgd < Vt , channel pinches off near drain when Vds > Vdsat = Vgs Vt

$$I_{ds} = \left\{ \begin{array}{cccc} 0 & V_{gs} & < & V_t & \text{Cutoff} \\ \beta \left(V_{gs} - V_t - V_{ds}/2\right) V_{ds} & V_{ds} & < & V_{dsat} & \text{Linear} \\ \frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} & > & V_{dsat} & \text{Saturation} \end{array} \right.$$

 Example, pass transistor passing VDD Vg = VDD If Vs > VDD - Vt, Vgs < Vt Hence, transistor would turn itself of

ENCS333

Integrated Circuit

What would be the voltages on the different nodes?

Assume: initial voltage of 0.5V on all the internal nodes

$$V_{dd}=1.0V$$
, $V_{t_n}=0.2V$ and $|V_{t_p}|=0.2V$

Midterm

ENCS333

Midterm 19/4/2016

Question 4 (10)

Consider a three trainsitor circuit as shown in figure below. Vdd=2.5V and input signal switch between 0 and Vdd with sharp rise and fall times. All transistor are minimum length 1=0.25UM, trainsestor width W2=2um, W1=1um. Note: ignore body effect. Find M3 transistor width such that the switching point of the inverter (Vm) is placed in the middle of Vx signal swing (10 points)

nent BIRZEIT UNIVERSITY

Integrated Circuit ENCS333

Vin = 2.5V

VX= VXH-VXL = 1.05V

At Vout=Vm, VDS=-1.45V for PMOS M2 and

VDS=1.05V for NMOS M3, which means both M2

and M3 are velocity Saturated (VDSATP=-1, VDSATN=0.6).

We know for the inverter IM2= IM3, so we can solve for the width of M3 using the velocity Saturated current equations.

\[
\begin{align*}
\text{IDS3} & \text{Wn kn' VBSATN}(Vm-Vtn-\frac{VBSATN}{2}) \\
\text{IDSATP} & \text{WDSATP}((VDD-Vm)+Vtp+\frac{VBSATP}{2}) = 1
\end{align*}
\]
\[
\text{WP} & \text{kn' VDSATP}((VDD-Vm)-Vtp-\frac{VBSATP}{2}) = 1.46; \text{Wn} = \frac{W2}{1.46} \simeq 1.37 \text{µm}
\]